Deep Reinforcement Learning for Reactive IOS Space Manipulator Operations

Matteo D'Ambrosio, Lorenzo Capra, Michèle Lavagna

17th Symposium on Advanced Space Technologies in Robotics and Automation

18-20 October 2023

Outline

- Research objectives
- Motion synchronization
- Reinforcement Learning guidance
- Simulation results

Conclusions

Research motivation

In orbit servicing (**IOS**) activities are a way forward sustainability for future space assets and leading space agencies are focusing more and more on their exploitation and reusability.

Motivation:

- **robotic** manipulation and capture as key enabler for IOS capabilities
- enhanced autonomy and adaptivity as crucial mission improvement.

Research objectives

Development of the **motion synchronization** scenario

Guidance and control RL implementation

Training and testing in nominal conditions

Robustness analysis

Motion synchronization

<u>Objectives:</u>

 Adjust the chaser end effector pose so that the grasping point is stationary: pose tracking

$$[x_{ee}, y_{ee}, z_{ee}] = [x_{grasp}, y_{grasp}, z_{grasp}] - [0.4, 0, 0]$$

• Thresholds set at:

 $e_{p_{ax}} < 5cm$ $e_{p_{tx}} < 5cm$ $e_{\alpha} < 5^{\circ}$

- **Robustness** against parametric and navigation uncertainty
- Successful if **consecutive timesteps** inside desired region

Simulator architecture

- 6-dof spacecraft equipped with 7-dof robotic arm
- A model-based feedback linearization control

 $H(q)\ddot{q} + C(q,\dot{q})\dot{q} = \tau$

$$\tau = H(q) \big(\ddot{q} + K_d \dot{e}_q + K_p e_q \big) + C(q, \dot{q}) \dot{q}$$

Reinforcement Learning guidance

An agent improving its decision-making by interacting and receiving feedbacks from the surrounding environment.

Proximal Policy Optimization (PPO) selected as RL agent:

Reinforcement Learning guidance

Policy neural network:

- Joints angles and angular velocity
- End-effector position and orientation error
- End-effector velocity and angular rate error
- Desired manipulator joint rates

Reward function:

Artificial Potential Field (APF)
$$\longrightarrow U = -e_p + \frac{10}{1+e_{pax}} + \frac{10}{1+e_{ptx}} + \frac{10}{1+e_{\alpha}}$$

Reward signal computed as:

 $r = U_k - U_{k-1} + \delta$

with
$$\delta = \begin{cases} 0.01 \text{ if errors} < \text{threshold} \\ 0 \quad \text{if errors} > \text{threshold} \end{cases}$$

Scheltema, Leiden, The Netherlands – 18-20 October 2023

Agent training

Simulation set-up:

- Target tumbling around its major inertia axis with random angular velocity $\longrightarrow \omega_{trg} \in [-3,3] \text{ deg/s}$
- **Spacecraft** kept **synchronized** with the target to minimize relative motion
- Initial conditions of the space manipulator are randomized
 Spacecraft position +/- 25cm Manipulator joints +/- 15°
- Grasping point randomized on the target face
- Simulation stopped when det(GJM) ~ 0, via SVD

Agent training

Neural Network specifics:

- 3 hidden layers of 300 neurons
- tanh activation function
- Learning rate = $1e^{-5}$
- Output sampled from gaussian distribution $\mathcal{N}(\mu, \sigma)$

Agent testing

Montecarlo analysis set-up to verify the performance over a new set of episodes with randomized conditions.

- 100% success rate
- Convergence reached in ¼ of the simulation time on average
- End-effector remains inside thresholds after convergence

Robustness analysis

Errors in the spin rate synchronization around the target's rotation axis are added:

 $\omega_{err} \in [-0.5, 0.5] \text{ deg/s}$

The grasping point is no more static with respect to the space manipulator, but the endeffector has to track a moving point.

Scheltema, Leiden, The Netherlands – 18-20 October 2023

Robustness analysis

Parametric analysis on the dimension of the target is performed to verify generalizing capabilities of the RL agent. Radius of the target object now sampled from: $r_{trg} \in [50, 150]$ cm

Scheltema, Leiden, The Netherlands – 18-20 October 2023

Conclusions

Deep Reinforcement Learning is successfully deployed to solve for the guidance of a space manipulator during the phase of motion synchronization of a potential IOS mission:

- PPO is employed as DRL agent
- Training is performed on the nominal scenario
- Montecarlo analysis is carried out to verify performances
- Robustness of the method is checked against synchronization errors and larger targets

Future developments:

Collision avoidance can be added by tuning the reward function

Full tumbling of the target must be investigated, adapting the synchronization scenario

Deep Reinforcement Learning for Reactive IOS Space Manipulator Operations

Matteo D'Ambrosio, Lorenzo Capra, Michèle Lavagna

17th Symposium on Advanced Space Technologies in Robotics and Automation

18-20 October 2023

